Binuclear pyrazolato-bridged organoplatinum(II) complexes: synthesis and characterization

Anshu Singhal and Vimal K. Jain
Chemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay 400085 (India)
S. Kannan
Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay 400085 (India)

(Received July 17, 1992; in revised form September 5, 1992)

Abstract

Binuclear organoplatinum(II) complexes of the type $\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}(\mu-\mathrm{NN})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]\left[\mathrm{Ar}=\mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ (tol), $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}-2$ (th); $\mathrm{NNH}=$ pyrazole (pzH), 3,5-dimethylpyrazole (3,5 - dmpzH), 3,4,5-trimethylpyrazole ($3,4,5-\mathrm{tmpzH}$); $\mathrm{PR}_{3}=\mathrm{PBu}_{3}, \mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PMePh}$) ${ }_{2}$] were prepared by reaction of $\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ with NNH and sodium hydroxide in methanol. The reaction of $\left[\mathrm{Pt}_{2}\right.$ tol ${ }_{2}(\mu-3,5-$ $\left.\mathrm{dmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ with isopropylmercaptan gave a thiolato-bridged complex $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}\left(\mu-\mathrm{S}^{\mathrm{i}} \mathrm{Pr}\right)_{2}\left(\mathrm{PMe}{ }_{2} \mathrm{Ph}\right)_{2}\right]$. All these complexes were characterized by elemental analyses and NMR (${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$) spectroscopy. Some of the complexes could be isolated in the trans or cis form, others as a mixture of cis and trans isomers. Isomerization reactions have been studied by ${ }^{31} \mathrm{P}$ NMR spectroscopy.

1. Introduction

Binuclear complexes of platinum group metals have received much attention in recent years because of their structural features and reactivity, particularly with reference to homogeneous catalysis. Pyrazolato-bridged complexes of the types " $\mathrm{M}(\mu-\mathrm{pz})_{2} \mathrm{M}$ " and " $\mathrm{M}(\mu-\mathrm{X})(\mu-$ $\mathrm{pz}) \mathrm{M}^{\prime \prime}$ have been reported recently [1-9], and some of these have shown high catalytic activity [8]. In these complexes two metal centres are bridged by the exo-bidentate pyrazolate ligands and the flexibility of the pyrazolate-bridges usually leads to a puckered central metallocyclic ring.

To our knowledge bis(pyrazolate) bridged complexes of platinum of the type " $\mathrm{Pt}(\mu-\mathrm{pz})_{2} \mathrm{Pt}^{\prime}$, other than $\left[\mathrm{Pt}_{2}(\mu-\mathrm{NN})_{2}(\mathrm{PC})_{2}\right] \quad(\mathrm{NN}=\mathrm{pz}$ or $3,5-\mathrm{dmpz} ; \quad \mathrm{PC}=$ ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{PC}\left(\mathrm{Me}_{2}\right) \mathrm{CH}_{2^{-}}$) [3], have not been studied. Attempts to isolate such complexes by the reaction of $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ with pyrazole lead to the formation of the products containing chloro-pyrazolate or methoxo-pyrazolate bridges or to a chloro-bridged di-

Correspondence to: Professor V.K. Jain.
nuclear complex with terminal azolate groups [2,9]. When this reaction is extended to the $\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}(\mu-\right.$ $\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}$] system " $\mathrm{Pt}(\mu-\mathrm{pz})_{2} \mathrm{M}$ " complex is formed exclusively, and the results of this work are reported in this paper.

2. Experimental details

The complexes cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)\left(\mathrm{PR}_{3}\right)\right]$, $\left[\mathrm{Pt}_{2^{-}}\right.$ $\left.\mathrm{Ar}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ and $\mathrm{Me}_{3} \mathrm{SnAr}$ were prepared according to literature methods [10,11]. Pyrazoles and tertiary phosphines were obtained from commercial sources. All the preparations were carried out under nitrogen. Elemental analyses were by the Analytical Chemistry Division of this Research Centre. ${ }^{1}$ H NMR spectra were recorded in CDCl_{3} on a Bruker AC-200 or Bruker AM-500 NMR spectrometers and chemical shifts are referenced to internal chloroform peak (δ $7.26 \mathrm{ppm}) .{ }^{31} \mathrm{P}$ NMR spectra were recorded on a Varian FT-80A NMR spectrometer operating at 32.203 MHz and chemical shifts are relative to external 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$.

2.1. Preparation of $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMe} \mathrm{C}_{2} \mathrm{Ph}\right)_{2}\right]$

To a methanol suspension of $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PMe}_{2}-\right.\right.$ $\mathrm{Ph})_{2}$] ($100 \mathrm{mg}, 0.109 \mathrm{mmol}$) was added a solution of 3,5 -dimethylpyrazole ($23 \mathrm{mg}, 0.239 \mathrm{mmol}$) in methanolic sodium hydroxide ($0.29 \mathrm{ml}(0.989 \mathrm{~N}), 0.287 \mathrm{mmol})$ with vigorous stirring under nitrogen. The whole solution was stirred at room temperature for 5 h . The solvent was stripped in vacuo and the residue was extracted with dichloromethane ($3 \times 5 \mathrm{ml}$). The volume was reduced to 5 ml and ethanol (5 ml) was added. On slow evaporation this gave colourless crystals of the title compound ($78 \mathrm{mg}, 0.075 \mathrm{mmol}, 69 \%$).

Other products were prepared similarly. Pertinent data for these complexes are summarized in Table 1.
2.2. Reaction of $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ with PPh_{3}

To a CDCl_{3} solution of $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,5-\mathrm{dmpz})_{2}(\mathrm{P}-\right.$ $\left.\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}$] ($83 \mathrm{mg}, 0.08 \mathrm{mmol}$) in an NMR tube, solid $\mathrm{PPh}_{3}(46 \mathrm{mg}, 0.175 \mathrm{mmol})$ was added and the reaction was studied by ${ }^{31} \mathrm{P}$ NMR spectroscopy. The reaction with free pyrazole was studied in similar manner.

2.3. Reaction between $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ and pyrazole

To a CDCl_{3} solution of $\left[\mathrm{Pt}_{2} \operatorname{tol}_{2}\left(\mu-\mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]\right.$ ($118 \mathrm{mg}, 0.128 \mathrm{mmol}$) solid pyrazole ($17.5 \mathrm{mg}, 0.257$ mmol) was added and the ${ }^{31} \mathrm{P}$ NMR spectrum was recorded. After 24 h the spectroscopy was repeated.

TABLE 1. Physical and analytical data for $\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}(\mu-\mathrm{NN})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ complexes

Complex ${ }^{\text {a }}$	Yield of recrystallized product (\%) ${ }^{\text {b }}$	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Analyses (\%): found (calc.)		
			C	H	N
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}\left(\mu-\mathrm{pz}_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]\right.$	45	144	$\begin{gathered} 46.7 \\ (46.6) \end{gathered}$	$\begin{gathered} \hline 6.5 \\ (6.5) \end{gathered}$	$\begin{gathered} 4.9 \\ (5.2) \end{gathered}$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	42	166	$\begin{gathered} 48.2 \\ (48.5) \end{gathered}$	$\begin{gathered} 6.5 \\ (6.9) \end{gathered}$	$\begin{gathered} 4.3 \\ (4.9) \end{gathered}$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{pz})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	46	128	$\begin{gathered} 47.0 \\ (47.5) \end{gathered}$	$\begin{gathered} 6.2 \\ (6.7) \end{gathered}$	$\begin{gathered} 4.8 \\ (5.0) \end{gathered}$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	41	146	$\begin{gathered} 49.0 \\ (49.4) \end{gathered}$	$\begin{gathered} 6.9 \\ (7.1) \end{gathered}$	$\begin{gathered} 5.3 \\ (4.8) \end{gathered}$
$\left[\mathrm{Pt}_{2} \mathrm{th}_{2}(\mu-\mathrm{pz})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	44	162	$\begin{gathered} 41.0 \\ (41.6) \end{gathered}$	$\begin{gathered} 6.0 \\ (6.1) \end{gathered}$	$\begin{gathered} 4.8 \\ (5.1) \end{gathered}$
$\left[\mathrm{Pt}_{2} \mathrm{th}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	42	122	$\begin{gathered} 44.3 \\ (43.8) \end{gathered}$	$\begin{gathered} 6.0 \\ (6.5) \end{gathered}$	$\begin{gathered} 4.7 \\ (4.9) \end{gathered}$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	66	227-231(d)	$\begin{gathered} 44.3 \\ (44.3) \end{gathered}$	$\begin{gathered} 4.7 \\ (4.6) \end{gathered}$	$\begin{gathered} 5.3 \\ (5.5) \end{gathered}$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{pz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	68	220-222(d)	$\begin{gathered} 44.4 \\ (44.0) \end{gathered}$	$\begin{gathered} 4.6 \\ (4.3) \end{gathered}$	$\begin{gathered} 5.1 \\ (5.7) \end{gathered}$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	69	230-233(d)	$\begin{gathered} 46.0 \\ (46.2) \end{gathered}$	$\begin{gathered} 5.0 \\ (4.8) \end{gathered}$	$\begin{gathered} 5.3 \\ (5.4) \end{gathered}$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,4,5-\mathrm{tmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	78	203-205(d)	$\begin{gathered} 47.0 \\ (47.3) \end{gathered}$	$\begin{gathered} 5.1 \\ (5.1) \end{gathered}$	$\begin{gathered} 5.4 \\ (5.3) \end{gathered}$
$\left[\mathrm{Pt}_{2} \mathrm{th}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	62	170-180(d)	$\begin{gathered} 39.5 \\ (39.9) \end{gathered}$	$\begin{gathered} 4.1 \\ (4.1) \end{gathered}$	$\begin{gathered} 5.4 \\ (5.5) \end{gathered}$
$\left[\mathrm{Pt}_{2} \mathrm{th}_{2}(\mu-3,4,5-\mathrm{tmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	66	219-220(d)	$\begin{gathered} 41.0 \\ (41.1) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.4) \end{gathered}$	$\begin{gathered} 4.7 \\ (5.3) \end{gathered}$
[$\left.\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{pz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$	48	142-144(d)	$\begin{gathered} 49.1 \\ (49.0) \end{gathered}$	$\begin{gathered} 4.0 \\ (3.9) \end{gathered}$	$\begin{gathered} 4.8 \\ (5.2) \end{gathered}$
[$\left.\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$	52	206-210(d)	$\begin{gathered} 51.1 \\ (50.8) \end{gathered}$	$\begin{gathered} 4.6 \\ (4.4) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.9) \end{gathered}$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-3,4,5-\mathrm{tmpz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$	47	162-164	$\begin{gathered} 50.9 \\ (51.6) \end{gathered}$	$\begin{gathered} 4.5 \\ (4.7) \end{gathered}$	-
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{pz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$	51	202	$\begin{gathered} 49.8 \\ (49.9) \end{gathered}$	$\begin{gathered} 4.0 \\ (4.2) \end{gathered}$	$\begin{gathered} 4.4 \\ (5.0) \end{gathered}$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$	55	218-220	$\begin{gathered} 51.8 \\ (51.6) \end{gathered}$	$\begin{gathered} 4.9 \\ (4.7) \end{gathered}$	$\begin{gathered} 4.5 \\ (4.8) \end{gathered}$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,4,5-\mathrm{tmpz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$	62	130-132(d)	$\begin{gathered} 52.2 \\ (52.4) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.9) \end{gathered}$	$\begin{gathered} 4.7 \\ (4.7) \end{gathered}$

[^0]To this a further 2 mg (0.02 mmol) of pyrazole was added to see whether isomerization had taken place. After storage for 24 h , methanolic sodium hydroxide solution was added and the resulting solution was studied by ${ }^{31} \mathrm{P}$ NMR.

2.4. Reaction of $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ with ${ }^{i}$ PrSH

To a CDCl_{3} solution of $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,5-\mathrm{dmpz})_{2}(\mathrm{P}-\right.$ $\left.\left.\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}\right](86 \mathrm{mg}, 0.083 \mathrm{mmol})$ was added an excess of isopropyl mercaptan (0.1 ml). The reaction was monitored by ${ }^{31} \mathrm{P}$ NMR spectroscopy. The resonances for $\left[\mathrm{Pt}_{2}\right.$ tol $\left._{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ slowly vanished over a period of one week with simultaneous formation of $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}\left(\mu-\mathrm{S}^{\mathrm{i} P r}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$. After a week solvent was evaporated and the residue was washed thoroughly with hexane and recrystallized from dichloromethaneethanol as a pale yellow crystalline solid ($60 \mathrm{mg}, 0.06$ mmol, 72\%), m.p. 194-200 (dec.) (Found: C, 42.9; H, 4.8. $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~S}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2}$ required $\mathrm{C}, 43.3 ; \mathrm{H}, 5.0 \%$).

3. Results and discussion

The reaction of $\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ with two moles of pyrazole in the presence of sodium hydroxide afforded bis-pyrazolate bridged complex, $\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}(\mu\right.$ $\mathrm{NN})_{2}\left(\mathrm{PR}_{3}\right)_{2}$] exclusively (eqn. (1)).

$$
\begin{gather*}
{\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]+2 \mathrm{NNH}+2 \mathrm{NaOH} \longrightarrow} \\
{\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}(\mu-\mathrm{NN})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]+2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O}} \tag{1}
\end{gather*}
$$

where $\mathrm{Ar}=\mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ (tol), $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}-2$ (th); NNH $=$ pyrazole (pzH), 3,5-dimethylpyrazole ($3,5-\mathrm{dmpzH}$), 3,4,5-trimethylpyrazole ($3,4,5-\mathrm{tmpzH}$); $\mathrm{PR}_{3}=\mathrm{PBu}_{3}$, $\mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PMePh}_{2}$.

All these complexes are white crystalline solids and can be recrystallized from dichloromethane-ethanol. Some of the bis(pyrazolate) complexes could be isolated as cis (I) or trans (II) isomer while others gave a mixture of the two forms. In general, separation of the two isomers was difficult since their solubilities were very similar.

cis (I)

trans (II)

The ${ }^{31} \mathrm{P}$ NMR spectra exhibited one or two resonances with platinum satellites. The former may be attributed to cis or trans isomer while the latter resonances are due to a mixture of two forms-the trans isomer usually predominated. The resonance with slightly larger coupling constant is on the basis of earlier reports [12] assigned to the cis isomer. It may be noted that the chloro-bridged complexes $\left[\mathrm{Pt}_{2} \mathrm{R}_{2}(\mu-\right.$ $\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}$] also exist as a mixture of cis and trans forms [11]. However, a relative ratio of the two isomers of bis(pyrazolate)-bridged complex differed than that of the chloro-bridged precursor and also varied from one preparation to another of the same complex. Isomerization may take place either after the formation of the complex or during the course of reaction. We have investigated these processes by ${ }^{31} \mathrm{P}$ NMR spectroscopy.

Catalytic amount of free ligand, protic solvents and temperature are some of the factors known to influence isomerization in platinum complexes. Thus the effects of these factors on isolated complexes were studied by ${ }^{31} \mathbf{P}$ NMR. No isomerization of trans$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-3,4,5-\mathrm{tmpz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]\left(\delta-5.8,{ }^{1} J(\mathrm{Pt}-\mathrm{P})\right.$ $=3920 \mathrm{~Hz}$) has been noticed when a chloroform solution was heated for 2 h or in the presence of catalytic amount of $3,4,5$-trimethylpyrazole. When two equivalents of triphenylphosphine was added to a solution of $\left[\mathrm{Pt}_{2}\right.$ tol $\left._{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ (trans $\delta-18.0$, ${ }^{1} J(\mathrm{Pt}-\mathrm{P})=3923 \mathrm{~Hz}$; cis $\left.\delta-18.8,{ }^{1} J(\mathrm{Pt}-\mathrm{P})=3943 \mathrm{~Hz}\right)$ relative ratio of the two isomers did not change nor was any bridge cleavage of the dinuclear complex noticed even on keeping the solution for 24 h at room temperature. Clearly no isomerization takes place during the reaction.

When a CDCl_{3} solution of $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}\left(\mu-\mathrm{Cl}_{2}\left(\mathrm{PMe}_{2}-\right.\right.\right.$ $\mathrm{Ph})_{2}$] (trans $\delta-13.8,{ }^{1} J(\mathrm{Pt}-\mathrm{P}) 4904 \mathrm{~Hz}$; cis $(>30 \%) \delta$ -13.9 ppm) was treated with two equivalents of pyrazole, $\left[\mathrm{Pt}(\mathrm{tol})(\mathrm{Cl})(\mathrm{pzH})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right]$ (phosphine trans to chloride) ($\delta-17.6,{ }^{1} J(\mathrm{Pt}-\mathrm{P}) 4316 \mathrm{~Hz}$) formed exclusively. The spectrum remained unaffected even on keeping the solution for 48 h at room temperature. This solution on treatment with stoichiometric quantity of methanolic sodium hydroxide gave trans- $\left[\mathrm{Pt}_{2} \operatorname{tol}_{2}(\mu\right.$ $\left.\mathrm{pz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]\left(\delta-16.2,{ }^{1} J(\mathrm{Pt}-\mathrm{P}) 3903 \mathrm{~Hz}\right)$ as the only detectable species in the solution.

A similar reaction was carried out with a more sterically demanding pyrazole. Thus, when a CDCl_{3} solution of $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$ (trans $\delta 1.3,{ }^{1} J(\mathrm{Pt}-$ P) 4764 Hz ; cis ($>25 \%$) $\delta 0.9 \mathrm{ppm}$) was treated with two equivalents of 3,5 -dimethylpyrazole two isomers of [$\mathrm{Pt}($ tol $\left.)(\mathrm{Cl})(3,5-\mathrm{dmpzH})\left(\mathrm{PBu}_{3}\right)\right]$, phosphine trans to chloride ($\delta-4.6,{ }^{1} J(\mathrm{Pt}-\mathrm{P}) 4189 \mathrm{~Hz}$) and phosphine trans to nitrogen ($\delta-3.8,{ }^{1} J(\mathrm{Pt}-\mathrm{P}) 4049 \mathrm{~Hz}$) formed in approximate ratio $3: 2$. Their relative ratio did not change on keeping the solution for 24 h . To see whether

TABLE 2. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right\}$ NMR data for $\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}(\mu-\mathrm{NN})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ complexes

Complex	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data			${ }^{1} \mathrm{H}$ NMR data ${ }^{\text {a }}$
	$\begin{aligned} & \delta \\ & (\mathrm{ppm}) \end{aligned}$		$\begin{aligned} & { }^{1} J(\mathrm{Pt}-\mathrm{P}) \\ & (\mathrm{Hz}) \end{aligned}$	
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}\left(\mu-\mathrm{pz}_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]\right.$	trans	-5.0	3777	0.95 (t, 7 Hz), 1.32-1.55 (br)[Bu]; 5.78 (br, s, CH-4, pz), 6.81 (br, s, CH-pz); 6.95 (m, Ph); 7.50 (m, Ph + CH-pz)
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	trans cis	$\begin{array}{r} -8.7 \\ -9.1 \end{array}$	$\begin{aligned} & 3767 \\ & 3793 \end{aligned}$	0.75 (br), 1.40 (br)[Bu]; 2.05 (br, s, pz-Me); 2.17 (br, s, pz-Me); 5.45 (s, br, CH-4, pz); 6.80 (br), 7.20 (br)[Ph] (trans isomer)
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{pz})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	trans	- 5.1	3789	0.80 (br), 1.40 (br)[Bu]; 2.15 (s, tol-Me); 5.90 (br, CH-4, pz); 6.65-7.40 (m, $\mathrm{C}_{6} \mathrm{H}_{4}+\mathrm{pz}-3,5$)
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	trans cis	$\begin{aligned} & -8.7 \\ & -9.1 \end{aligned}$	$\begin{aligned} & 3779 \\ & 3804 \end{aligned}$	0.77 (t, $7 \mathrm{~Hz}, \mathrm{MeCCCP}) ; 1.23-1.42\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 1.62$ (m, PCH_{2}); 2.11 (s, pz-Me, 2Me); 2.19 (s, tol-Me, 2 Me); 2.22 (s, pz-Me, 2Me); 5.50 (s, CH-4, pz); 6.70 (d, $7.5 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}$); 7.57 (d, $7.5 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}$) (trans isomer)
$\left[\mathrm{Pt}_{2} \mathrm{th}_{2}\left(\mu-\mathrm{pz}_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]\right.$	trans	- 5.4	3560	$\begin{aligned} & 0.85(\mathrm{br}), 1.50(\mathrm{br})[\mathrm{Bu}] ; 6.15(\mathrm{br}, \mathrm{~s}, \mathrm{CH}-4, \mathrm{pz}) ; 6.50-7.45 \\ & (\mathrm{~m}, \mathrm{th}+3,5-\mathrm{pz}) \end{aligned}$
$\left[\mathrm{Pt}_{2} \mathrm{th}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	trans	-9.4	3549	0.80 (br), 1.5 (br)[Bu]; 2.05 (s, Me-pz); 2.22 (s, Me-pz); 5.50 (s, CH-4, pz); 6.65-7.30 (m, th)
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2}{ }_{2}\right]\right.$	trans cis	$\begin{aligned} & -18.1 \\ & -18.8 \end{aligned}$	$\begin{aligned} & 3906 \\ & 3929 \end{aligned}$	1.42 (d), 1.56 (d), (10 Hz each, PMe_{2} trans isomer); 1.46 (d), 1.52 (d) (10 Hz each, PMe_{2}; cis isomer); 2.03 (s); 2.17 (s) [Me-3 and 5, pz, trans isomer]; 1.88 (s), 2.25 (s) (Me-3,5, pz, cis isomer), 5.57 (s, CH-4, pz, trans); 5.46 (s), 5.73 (s) (CH-4, pz, cis isomer); $6.73-6.84(\mathrm{~m}), 7.41-7.98(\mathrm{~m})$ [Ph].
$\left[\mathrm{Pt}_{2} \operatorname{tol}_{2}(\mu-\mathrm{pz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	trans	-16.2	3903	1.37(d), 1.42 (d) [10 Hz each, PMe_{2}]; 2.18 (s, Me-tol); 5.85 (br), 6.00 (br), [CH-4, pz, cis]; 6.73 (d), 7.32 (d) [7.5 Hz each, $\mathrm{C}_{6} \mathrm{H}_{4}$]; 7.04 (br), 7.19 (br), 7.46 (br), 8.17 (br) $\left[\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{CH}-3,5 \mathrm{pz}\right]$.
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	trans cis	$\begin{aligned} & -18.0 \\ & -18.8 \end{aligned}$	$\begin{aligned} & 3923 \\ & 3943 \end{aligned}$	1.41 (d), 1.52 (d) (10 Hz each, PMe_{2} trans isomer), 1.46 (d), 1.53 (d) [10 Hz each, Pme_{2}, cis isomer], 2.19 (s, tol-Me trans); 2.01 (s), 2.16 (s) [Me-3,5 pz, trans isomer]; 2.15 (s, tol-Me cis); 1.88 (s), 2.24 (s) ($\mathrm{Me}-3$ and 5 pz , cis); 5.57 (s, trans CH-4 pz); 5.47, 5.72 (s, CH-4 pz, cis); 6.64 (d, $8 \mathrm{~Hz} \mathrm{C}_{6} \mathrm{H}_{4}$, cis); $6.66\left(\mathrm{~d}, 8 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$, trans); $7.36-8.03\left(\mathrm{~m}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right)$.
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,4,5-\mathrm{tmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	trans cis	$\begin{aligned} & -18.1 \\ & -18.9 \end{aligned}$	$\begin{aligned} & 3901 \\ & 3926 \end{aligned}$	1.36 (d), 1.48 (d) [$10 \mathrm{~Hz}, \mathrm{PMe}_{2}$, trans isomer); 1.42 (d), 1.52 (d) (10 Hz each, PMe_{2}, cis isomer); 1.56 (s), 1.76 (s) (Me-4, pz cis isomer); 1.63 (s, Me-4, pz, trans isomer); 1.79 (s), 2.14 (s) [Me-3,5 pz, cis isomer]; 1.91 (s), 2.09 (s) [Me-3 and 5 pz , trans isomer]; 2.15 (s, tol-Me, cis isomer); 2.16 [s, tol-Me trans isomer]; 6.63 (d), 7.36 (d) $\left[7 \mathrm{~Hz}\right.$ each, $\mathrm{C}_{6} \mathrm{H}_{4}$ cis isomer), 6.66 (d), 7.51 (d) (7 Hz each $\mathrm{C}_{6} \mathrm{H}_{4}$, trans isomer); 7.41 (br), $7.98(\mathrm{~m})$ [Ph].
$\left[\mathrm{Pt}_{2} \mathrm{th}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	trans cis	$\begin{aligned} & -16.4 \\ & -18.7 \end{aligned}$	3703	1.69 (d), 1.54 (d) (10 Hz each, PMe_{2}, trans isomer); 1.40 (d), 1.61 (d) (10 Hz each, PMe_{2}, cis isomer); 2.09 (s), 2.16 (s) (Me-3 and 5, pz, trans isomer); 1.89 (s), 2.23 (s) (Me-3,5 pz, cis isomer); 5.68 (s, CH-4, pz, trans isomer) 5.60 (s) 5.75 (s) (CH-4, pz, cis isomer); $6.53-8.17(\mathrm{~m}, \mathrm{Ph}+\mathrm{th})$
$\left[\mathrm{Pt}_{2} \mathrm{th}_{2}(\mu-3,4,5-\mathrm{tmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	trans cis	$\begin{aligned} & -16.7 \\ & -18.9 \end{aligned}$	$\begin{aligned} & 3660 \\ & 3688 \end{aligned}$	1.38 (d), 1.60 (d) [$10 \mathrm{~Hz}, \mathrm{PMe}_{2}$]; 1.64 (s), 1.77 (s) [Me-4, pz], 1.82 (s) 2.14 (s) [Me-3 and 5, pz], $6.84-8.16$ ($\mathrm{m}, \mathrm{Ph}+$ th) (cis isomer)
[$\left.\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{pz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$	trans	-2.6	3962	$\begin{aligned} & 1.50(\mathrm{~d}, 10 \mathrm{~Hz}, \mathrm{PMe}) ; 5.78(\mathrm{br}, \mathrm{CH}-4, \mathrm{pz}) ; 6.78-6.85 \\ & (\mathrm{~m}), 7.22-7.61(\mathrm{~m})[\mathrm{Ph}+\mathrm{pz}] \end{aligned}$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$	trans cis	$\begin{aligned} & -5.9 \\ & -3.2 \end{aligned}$	3949	1.46 (d, $10 \mathrm{~Hz}, \mathrm{PMe}$, cis isomer); 1.70 ($\mathrm{d}, 10 \mathrm{~Hz}$, PMe trans isomer); 1.85 (s), 2.29 (s) (Me-3 and 5 pz , trans); 1.89 (s), 2.33 (s), (Me-3 and 5 pz , cis isomer); 5.46 (s, CH-4, pz trans isomer); 5.66 (s), 5.44 (s) (CH-4, pz cis isomer); 6.67-7.86 (m, Ph)
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-3,4,5-\mathrm{tmpz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$	trans	- 5.8	3920	1.67 (d, 10 Hz, PMe); 1.53 (s, Me-4, pz); 1.71 (s), 2.17 (s) (Me-3,5, pz); 6.66 (br), 7.11-7.55 (m) (Ph)

TABLE 2 (continued)

Complex	${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right) \mathrm{NMR}$ data		${ }^{1} \mathrm{H}$ NMR data ${ }^{\text {a }}$
	δ (ppm)	$\begin{aligned} & { }^{1} J(\mathbf{P t}-\mathbf{P}) \\ & (\mathrm{Hz}) \end{aligned}$	
$\overline{\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{pz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]}$	$\begin{aligned} & \text { trans- } 2.6 \\ & \text { cis }-2.4 \end{aligned}$	3974	1.48 (d, $10 \mathrm{~Hz}, \mathrm{PMe}$, trans isomer); 1.63 (d, 10 Hz , PMe, cis isomer); 2.16 (s, tol-Me, trans isomer); 2.20 (s , tol-Me cis isomer); 5.62 (s, CH-4, pz cis isomer); 5.77 (s, CH-4 pz, trans isomer); 6.58-7.58 (m, $\mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}+\mathrm{CH}-3,5 \mathrm{pz}$)
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$	$\begin{aligned} & \text { trans- } 5.8 \\ & \text { cis } \quad-5.4 \end{aligned}$	$\begin{aligned} & 3962 \\ & 4001 \end{aligned}$	1.41 (d, $10 \mathrm{~Hz}, \mathrm{PMe}$, cis isomer); 1.69 (d, $10 \mathrm{~Hz}, \mathrm{PMe}$, trans isomer); 1.88 (s), 2.23 (s) (Me-3,5 pz, cis isomer); 1.85 (s), 2.29 (s) (Me-3,5, pz trans isomer), 2.21 (br, s, tol-Me cis + trans isomer); 5.46 (br CH-4 pz, trans isomer); 5.61 (br, $\mathrm{CH}-4 \mathrm{pz}$, cis isomer); $6.51(\mathrm{~d}, 7 \mathrm{~Hz}$, $\mathrm{C}_{6} \mathrm{H}_{4}$) $7.13-7.79\left(\mathrm{~m}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right)$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,4,5-\mathrm{tmpz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$	$\begin{aligned} & \text { trans }-5.8 \\ & \text { cis }-5.5 \end{aligned}$	$\begin{aligned} & 3936 \\ & 3980 \end{aligned}$	1.43 (d, $10 \mathrm{~Hz}, \mathrm{PMe}$, cis isomer); 1.66 (d, PMe, trans isomer); 1.71 (s), 2.13 (s), ($\mathrm{Me}-3,5 \mathrm{pz}$, trans isomer); 1.55 (s) (Me-4, pz trans isomer); 1.79, 2.11 (s) (Me-3,5 pz , cis isomer); 1.70 (s, Me-4 pz, cis isomer); 2.10 (s, tol-Me, cis isomer); 2.17 (s, tol-Me, trans isomer); 6.51 $\left(\mathrm{d}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.12-7.76\left(\mathrm{~m}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right)$

${ }^{a}$ Since spectra were recorded at high field ${ }^{n} J(\mathrm{Pt}-\mathrm{H})$ is not determined because ${ }^{195} \mathrm{Pt}$ relaxes primarily via CSA . $\mathrm{d}=$ doublet, $\mathrm{t}=\mathrm{triplet}$, $\mathrm{m}=$ multiplet, $\mathrm{br}_{\mathrm{r}}=$ broad .
protic solvents contribute to isomerization, methanol was added. ${ }^{31} \mathrm{P}$ spectrum of the resulting solution showed three peaks ($\delta-4.9,{ }^{1} J(\mathrm{Pt}-\mathrm{P}) 4099 \mathrm{~Hz} ; \delta$ $-3.9,{ }^{1} J(\mathrm{Pt}-\mathrm{P}) 4024 \mathrm{~Hz}$ and $\delta-0.6 \mathrm{ppm}$, relative ratio $3: 2: 0.4$) and did not change with time. The changes in the coupling constants and chemical shifts of the former two may be attributed to the solvent effects while the latter resonance may tentatively be assigned to the ionic species. This solution on treatment with two equivalents of aqueous sodium hydroxide readily gave two isomers of $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,5-\right.$ $\mathrm{dmpz})_{2}\left(\mathrm{PBu}_{3}\right)_{2}$] (trans $\delta-8.7,{ }^{1} J(\mathrm{Pt}-\mathrm{P}) 3779 \mathrm{~Hz}$; cis δ $-9.1,{ }^{1} J(\mathrm{Pt}-\mathrm{P}) 3804 \mathrm{~Hz}, 3: 1$ ratio). It can be inferred that isomerization is rapid and takes place during the process of proton abstraction from the mononuclear species, a process whose control is not yet clearly understood.

The reaction of $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-3,5-\mathrm{dmpz})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ with isopropyl mercaptan was examined by ${ }^{31} \mathrm{P}$ NMR spectroscopy. Isopropyl mercaptan reacts slowly (about a week for completion) with the formation of trans$\left[\mathrm{Pt}_{2} \operatorname{tol}_{2}\left(\mu-\mathrm{S}^{\mathrm{i} P r}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]\left(\delta-16.3,{ }^{1} J(\mathrm{Pt}-\mathrm{P})=\right.$ 3792 Hz) [10].

The ${ }^{1} \mathrm{H}$ NMR spectra of these complexes were recorded at 200 and 500 MHz in CDCl_{3}. In the cis isomer two pyrazolate rings are magnetically nonequivalent hence two sets of resonances are expected for the substituents at 3,4 and 5 positions of the ring. In the trans isomer both the pyrazolate rings are equivalent, and only one signal for the $\mathrm{C}-4$ substituent is expected. However, substituents at 3 and 5 -positions
are non-equivalent due to different groups (PR_{3} or Ar) trans to bridging nitrogens. In general spectra showed this trend and expected peak multiplicities. The complexes containing dimethyl(phenyl)phosphine exhibited two doublets for each isomer attributable to PMe_{2} protons indicating non-equivalence of phosphine methyl groups. A similar behaviour for $\mathrm{PMe}_{2} \mathrm{Ph}$ complexes has been reported earlier [13,14].

Acknowledgments

We thank Drs. J. P. Mittal and D. D. Sood for encouragement of this work. We are grateful to the Head of the Bio-Organic Division and $500 \mathrm{MHz} \mathrm{Na}-$ tional NMR facility at TIFR for providing ${ }^{1} \mathrm{H}$ NMR spectra and the Head of the Analytical Chemistry Division for microanalyses.

References

1 S. Trofimenko, Progr. Inorg. Chem., 34 (1986) 115.
2 F. Bonati, H. C. Clark and C. S. Wong, Can. J. Chem., 58 (1980) 1435.

3 A. B. Goel, S. Goel and D. Vanderveer, Inorg. Chim. Acta, 82 (1984) L9.

4 S,. Trofimenko, Inorg. Chem, 10 (1971) 1372.
5 D. A. Johnson, W. C. Deese and M. L. Howe, Inorg. Nucl. Chem. Lett., 16 (1980) 53; W. C. Deese, D. A. Johnson and A. W. Cordes, Inorg. Chem., 20 (1981) 1519; W. C. Deese and D. A. Johnson, J. Organomet. Chem., 232 (1982) 325.
6 A. W. Coleman, D. T. Eadie, S. R. Stobart, M. 1. Zaworotko and J. L. Atwood, J. Am. Chem. Soc., 104 (1982) 922; K. A. Beveridge, G. W. Bushnell, S. R. Stobart, J. L. Atwood and M. J.

Zaworotko, Organometallics, 2 (1983) 1447; J. L. Atwood, K. A Beveridge, G. W. Bushnell, K. R. Dixon, D. T. Eadie, S. R. Stobart and M. J. Zaworotko, Inorg. Chem., 23 (1984) 4050; G. W. Bushnell, M. J. Decker, D. T. Eadie, S. R. Stobart, R. Vefghi, J. L. Atwood and M. J. Zaworotko, Organometallics, 4 (1985) 2106; D. G. Harrison and S. R. Stobart, J. Chem. Soc., Chem. Commun., (1986) 285; R. D. Brost, D. O. Kimberly Fjeldsted and S. R. Stobart, J. Chem. Soc., Chem. Commun.,, (1989) 488; R. D. Brost and S. R. Stobart, J. Chem. Soc., Chem. Commun., (1989) 498.

7 L. A. Oro, D. Carmona, M. P. Lamata, M. C. Apreda, C. Foces-Foces, F. H. Cano and P. M. Maitlis, J. Chem. Soc., Dalton Trans., (1984) 1823; L. A. Oto, D. Carmona, P. L. Perez, M. Esteban, A. Tiripicchio and M. T. Camellini, J. Chem. Soc., Dalton Trans., (1985) 973; D. Carmona, L. A. Oro, M. P. Lamata, M. P. Puebla, J. Ruiz and P. M. Maitlis, J. Chem. Soc., Dalton Trans., (1987) 639; J. A. Cabeza, C. Landazuri, L. A. Oro, D. Belletti, A. Tiripicchio and M. T. Camellini, J. Chem. Soc., Dalton Trans., (1989) 1093; M. T. Pinillos, C. Tejel, L. A. Oro, M. C. Apreda, C. Foces-Foces and F. H. Cano, J. Chem. Soc., Dalton Trans., (1989) 1133; D. Carmona, F. J. Lahoz, L. A. Oro, J. Reyes and M. P. Lameta, J. Chem. Soc., Dalton Trans., (1990) 355; G. Lopez, J. Ruiz, G. Garcia, J. M. Marti, G. Sanchez and J. Garcia, J. Organomet. Chem., 412 (1991) 435; G. Lopez, J. Ruiz, G.

Garcia, C. Vicente, J. Casabo, E. Molins and C. Miravitlles, Inorg. Chem., 30 (1991) 2605; M. T. Pinillos, A. Elduque, J. A. Lopez, F. J. Lahoz and L. A. Oro, J. Chem. Soc., Dalton Trans., (1991) 1391.

8 P. Kalck, A. Thorez, M. T. Pinillos and L. A. Oto, J. Mol. Catal., 31 (1985) 311; C. Claver, P. Kalck, M. Ridmy, A. Thorez, L. A. Oro, M. T. Pinillos, M. C. Apreda, F. H. Cano and C. Foces-Foces, J. Chem. Soc., Dalton Trans., (1988) 1523; A. Tiripicchio and M. T. Camellini, J. Chem. Soc., Dalton Trans., (1990) 989.

9 V. K. Jain and S. Kannan, Polyhedron, 11 (1992) 27; V. K. Jain and S. Kannan, J. Chem. Res. (S), (1992) 278; V. K. Jain, S. Kannan and E. R. T. Tiekink, J. Chem. Soc., Dalton Trans., (1992) 2231.

10 V. K. Jain and S. Kannan, J. Organomet. Chem., submitted.
11 C. Eaborn, K. J. Odell and A. Pidcock, J. Chem. Soc., Dalton Trans., (1978) 1288.
12 H. C. Clark, V. K. Jain and G. S. Rao, J. Organomet. Chem., 279 (1985) 181.

13 V. K. Jain, Inorg. Chim. Acta, 133 (1987) 261; V. K. Jain, R. P. Patel, K. V. Muralidharan and R. Bohra, Polyhedron, 8 (1989) 2151.

14 V. K. Jain and G. S. Rao, Inorg. Chim. Acta, 127 (1986) 161; V. K. Jain, R. P. Patel and K. Venkatasuhramanian, Polyhedron, 10 (1991) 851.

[^0]: ${ }^{\text {a }}$ pzH $=$ pyrazole; $3,5-\mathrm{dmpzH}=3,5$-dimethylpyrazole; $3,4,5-\mathrm{tmpzH}=3,4,5$-trimethylpyrazole; tol $=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$; th $=2-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$. ${ }^{\mathrm{b}}$ Recrystallized from dichloromethane-ethanol or benzene-hexane mixture on cooling for $10-15 \mathrm{~h}$ in a freezer.

